
J. Fluid Mech. (1992), vol. 239, p p .  489-509 
Printed in Great Britain 

489 

Transition to a periodic regime in mixed 
convection in a square cavity 

By ELIAS PAPANICOLAOU AND YOGESH JALURIA 
Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New 

Jersey, New Brunswick, NJ  08903, USA 

(Received 5 November 1991 ) 

The numerical study presented in this work describes the transition from a steady, 
laminar regime to a periodic regime in an air-filled, two-dimensional cavity subjected 
to localized heating. The cavity lies at  the bottom of a horizontal channel through 
which a cold air stream flows. The heating is provided by a constant heat input 
source, located on one of the vertical walls of the cavity and this generates a 
buoyancy-driven recirculating flow in the cavity. The interaction of this recirculating 
flow with the cold through-flow leads to steady flow and thermal fields as long as the 
value of the Grashof number, associated with the heat input from the source, remains 
below a certain critical value. As this value is exceeded, an unstable situation arises 
and, after an initial transient, the results show a very regular, periodic, almost 
sinusoidal behaviour. Similar previous works on natural convective flows in cavities 
have discovered such a periodic behaviour, as a form of travelling wave instability, 
having the characteristics of a Hopf bifurcation. These characteristics were also 
found to be present in this mixed convective situation, where the amplitudes of the 
oscillating quantities, like the thermal energy outflow, vary with the square root of 
the Grashof number. However, the present problem is also governed by the value of 
the Reynolds number, and its effect on the results is studied. The observed instability 
is of thermal origin, with small fluid cells a t  the centre of the cavity being subjected 
to periodic cooling and heating and, therefore, to a circulatory motion due to the 
density change. 

1. Introduction 
It is well known today, from relatively recent findings, that natural convection in 

cavities, due to heating not only from below as in the Rayleigh-Be'nard problem but 
also from the sides, exhibits oscillatory behaviour when the main governing 
parameter, the Rayleigh number, reaches a certain critical value. This value depends 
on the type of boundary conditions imposed at the horizontal walls of the cavity, i.e. 
whether adiabatic or perfectly conducting, as well as the aspect ratio, usually 
expressed as height over width of the cavity. The most notable works demonstrating 
this behaviour are those by Briggs & Jones (1985), Jones & Briggs (1986), LeQue're' 
& Alziary de Roquefort (1985, 1986) and Winters (1987). All these studies identified 
this transition as a Hopf bifurcation and as the first transition on the route to 
turbulence. 

However, similar observations of periodic behaviour had already been made before 
the work mentioned above, in several experimental and numerical studies. Igarashi 
(1978) carried out an experimental investigation of the natural convection due to a 
line heat source placed along the centreline of a long horizontal enclosure. He 
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observed an oscillatory flow at a value of the modified Rayleigh number Ra*, based 
on the strength or energy input of the heat source, in the range 

6 x  lo5 < Ra* < 3 x  lo*. 

The frequency of the oscillations was found to vary as Ru*O.~O. Later, in a numerical 
study, Kublbeck, Merker & Straub (1980) found oscillatory results when they 
considered an enclosure with one sidewall heated to a high temperature up to half its 
height and to a lower temperature along the remaining half, with the other three 
walls kept adiabatic. Oscillations developed at  a value of the Rayleigh number, based 
on the width L of the cavity, Ra = 5.6 x lo6 and their frequency was found to 
increase as RuO.~. 

Meanwhile, the study of the transient behaviour of a fluid in a cavity heated from 
the sides by Patterson & Imberger (1980) helped later researchers to explain the 
physical mechanisms of the periodic behaviour which was observed in their work. 
They suggested that a t  high Rayleigh numbers, the presence of internal gravity 
waves is a determining factor in the time required for the attainment of steady-state 
conditions. These gravity waves are generated from the discharge of the upward- 
moving buoyancy-induced flow along the hot wall into the thermally stratified core 
of the cavity and are characterized by the Brunt-Vaisala frequency (Turner 1973). 
The steady state is achieved after the gravity waves are damped, at  a time Td of the 
order Td x h2/v ,  where h is the height of the cavity and v the viscosity of the fluid. 
As was realized in later studies, the presence of internal waves in the cavity leads to 
the observed periodic behaviour. 

The numerical work of Staehle & Hahne (1982), without any specific reference to 
the gravity waves, described the transient behaviour of fluids with different Prandtl 
numbers in both horizontal and vertical cavities. They observed an overshoot in the 
beginning, in both the values of the stream function at the centre of the cavity and 
the mean Nusselt number, and this was followed by oscillations that decayed in time 
and whose frequency was an increasing function of the Rayleigh number. For the 
cavity heated from the sides, the frequency varied with the square root of the 
Rayleigh number, in agreement with Kublbeck et al. (1980). The oscillations were 
characterized by a damping factor (the ratio between two successive maxima of the 
oscillating values), which decreases with Ra and eventually approaches the value of 
1 at high values of Ra. At this point, the maximum amplitude remains constant with 
time and a steady periodic regime is attained. 

Ivey (1984), in an experimental work where pure water and a mixture of glycerol 
and water were used as the working fluids, did not observe internal gravity waves, 
but instead, at high Rayleigh numbers, he observed an oscillatory behaviour which 
was more pronounced near the corners of the cavity. He attributed this phenomenon 
to an instability due to an internal hydraulic jump, as the boundary layer flows along 
the vertical walls impinged on the horizontal boundaries and turned towards the 
interior of the cavity as horizontal flows. These flows were characterized by a Froude 
number Fr > 1 and, therefore, they were supercritical and would undergo an internal 
hydraulic jump, as described by Turner (1973). 

Air was the fluid used in the numerical work of LeQuBr6 & Alziary de Roquefort 
(1985). They considered aspect ratios between 4 and 10 and cavities with isothermal 
vertical walls and adiabatic horizontal walls. They determined the critical value of 
the Rayleigh number Racr at which, for each aspect ratio, a transition from a steady 
to a time-dependent regime occurs. They found that at values Ra < Racr, there were 
oscillations due to the internal gravity waves. These were eventually damped out and 
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a steady state was obtained, in agreement with the observations of Staehle & Hahne 
(1982). These oscillations may be characterized by two distinct frequencies. As Racr 
is reached, the oscillations persist and the two frequencies are still present, until at 
a certain time the lower frequency disappears and the regime is characterized by a 
single frequency. The lower frequency was attributed to the presence of the internal 
gravity waves, and the higher frequency to the frequency of travelling waves. These 
were shown in contour line plots of the fluctuating temperature field. In a later work, 
Le&uB& & Alziary de Roquefort (1986) obtained numerical results for cavities with 
aspect ratios in the range 1-10, with isothermal vertical walls and either adiabatic 
or perfectly conducting horizontal walls. For both cases, they determined the critical 
values of the Rayleigh number for the transition to a periodic flow, as a function of 
the aspect ratio. The perfectly conducting walls had lower values of Racr than the 
adiabatic walls at the same aspect ratio. For an aspect ratio of 1 and for perfectly 
conducting horizontal walls, they found a critical number of Racr = 2.2 x lo6 in 
agreement with the results of Briggs & Jones (1985). They concluded that the 
transition to periodic convection had the characteristics of a Hopf bifurcation, where 
the frequency of the oscillations varies as Ra0e5 and the amplitude of the limit cycle 
varies as (RU--R~,,)~.~. 

A square cavity with perfectly conducting top and bottom horizontal walls and 
heated from the sides was the configuration studied by Briggs & Jones (1985) and 
Jones & Briggs (1986). In  the first study they presented experimental results and 
determined the onset of the periodic regime a t  Ra = 3 x 10'. As they further 
increased the Rayleigh number, a second, higher frequency appeared, then the low 
frequency disappeared and another, even higher frequency appeared which persisted 
until the value Ra = 1.2 x lo', which was the last value reported. Briggs & Jones 
interpreted the periodic behaviour as a resonance between the travelling waves in the 
boundary layers along the vertical walls and the gravity waves due to the thermal 
stratification of the core of the cavity. In the second study (Jones & Briggs 1986), 
they presented both experimental and numerical results. Their numerical results 
showed a lower critical Rayleigh number but they confirmed the step changes in the 
frequency as Ra increased. The differences were attributed to three-dimensional 
effects in the experiment, since the numerical simulation was two-dimensional. The 
contour plots of the instantaneous temperature fields showed the existence of hot and 
cold cells following a circulatory motion inside the cavity. The transition to periodic 
flow was identified as a Hopf bifurcation. 

Haldenwang (1986) also verified the presence of internal gravity waves during the 
transient state in his numerical simulation of convection in a cavity heated from the 
sides, with adiabatic horizontal walls. Damped oscillations were observed, with a 
single frequency for Ra < lo8 and with two frequencies for Ra = lo8. The frequencies 
were very close to the value of the Brunt-Vliisala frequency. For the aspect ratio of 
1 considered, he did not find a steady periodic regime, but as the Rayleigh number 
reached the value of 10s*6, the flow became chaotic and no distinct frequency was 
present. The square cavity with perfectly conducting horizontal walls (Briggs & 
Jones 1985) was also studied by Winters (1987). In his linear stability analysis, he 
proved the existence of five Hopf bifurcation points in the range 

2 x lo6 < Ra < 3 x lo6. 

This was in agreement with the results of Briggs & Jones (1985) and Jones & Briggs 
(1986). Winters also claimed that the existence of these distinct points, corresponding 
to distinct frequencies of oscillation, may be associated with the excitation of 
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different modes of the internal gravity waves. This confirmed the argument of Briggs 
& Jones (1985) that  the oscillations are due to a resonance between the travelling 
waves and the gravity waves. The bifurcation point corresponding to the lower value 
of Ra was found to be Ra = 2.109 x lo6 and this was taken as the value of Racr for 
the transition to  the periodic regime. 

In a more recent work, Chikhaoui, Marcillat & Sani (1988) in a combined numerical 
and experimental study found a sequence of transitions in a tall three-dimensional 
cavity with two differentially heated vertical walls and all other walls perfectly 
conducting. For increasing Grashof number, based on the smallest horizontal 
dimension of the cavity, the sequence found was : uni-cellular flow, multi-cellular 
flow, oscillations, uni-cellular flow (reverse transition), oscillations with a steady 
amplitude (Hopf bifurcation) and a single frequency, oscillations with two 
frequencies and finally a chaotic regime with no distinct frequencies. All these 
transitions occurred in the range lo4 < Gr < 1.76 x lo6, where 

Gr = g P ( T h - q ) H 3 / v 2  

(Th, T, being the temperatures of the hot and the cold walls, respectively, and H the 
width of the cavity). In  the study of Paolucci & Chcnoweth (1989) a sequence of 
transitions was also found, starting from the periodic regime and moving successively 
to a quasi-periodic, a chaotic (weakly turbulent) and a fully turbulent regime. They 
also proposed that for a cavity with aspect ratio 1 ,  the first bifurcation from steady 
to periodic convection is an instability due to gravity waves, while the second one, 
from the periodic to  quasi-periodic is due to an instability in the boundary layers, 
along the vertical walls. Each of these bifurcations is associated with one distinct 
frequency and its harmonics and their values are incommensurate. 

Finally, i t  should be mentioned that there are also several studies where 
oscillations for low-Prandtl-number fluids such as liquid metals have been reported, 
mostly for shallow cavities (aspect ratio A = H / W  < l ) ,  heated from the sides. 
Typical examples are, among others, the numerical works by Roux, Bontoux & 
Henry (1985) and the more recent ones by Gervasio et al. (1990) and Afrid & Zebib 
(1990). They found various transitions, either to multi-cellular or oscillatory states, 
depending on the aspect ratio of the cavity, the Prandtl and Grashof numbers. 
However, their results cannot be quantitatively compared to those of the previously 
mentioned works which all considered air as the fluid, as also does the present work. 
The Prandtl number of air is outside the range of Pr considered by Roux et al. (1985) 
and Afrid & Zebib (1990). Nevertheless, the basic trends are similar. 

While the periodic natural convection in cavities has recently been studied in 
detail to understand the basic mechanisms, the present work will show that similar 
periodic behaviour is also encountered in cavities where the heat transfer is due to 
mixed convection. More specifically, in the cavity to be studied here, the heating is 
due to an isolated heat source of length I,,, generating a constant heat flux ql per unit 
area and located on a vertical wall of the cavity, with its centre a t  a distance d, from 
the bottom. The fluid is air, with a coefficient of thermal expansion 8, kinematic 
viscosity v and thermal conductivity k,. The natural convective flow due to the 
source interacts with an external cold air flow which enters the cavity at a mean inlet 
velocity vi through an opening of height Hi and exits through a similar opening 
on the opposite vertical wall. It is found that at a certain critical value of the modi- 
fied Grashof number Gr = (g,8ATHp)/v2 (or the modified Rayleigh number 
Ra = (gaATHQ)/(vup)), where g is the gravitational acceleration and A T  = qgH, /k ,  
is based on the heat input of the source, the flow becomes periodic and exhibits a 
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FIGURE 1. The geometry of the flow configuration under Consideration, 
along with the coordinate system. 

behaviour very similar to that discussed above, pertaining to pure natural 
convection. However, the Reynolds number Re = v1 H i / v  of the external flow is also 
found to have an effect on the oscillating flow, as expected. 

2. Mathematical formulation 
2.1. Governing equations 

The configuration considered here is shown in figure 1,  with all the geometry 
parameters. The fluid is air, with a Prandtl number Pr = v/ap = 0.733, where uf is the 
fluid thermal diffusivity, and is considered as incompressible. The fluid flow and heat 
transfer are governed by the continuity, NavierStokes and energy equations. The 
effect of thermal buoyancy due to the heat input is taken into account for the air flow 
inside the enclosure. The Boussinesq approximations are applied for the density 
variations. The compressibility work and the viscous dissipation terms are neglected 
in the energy equation. With the foregoing assumptions, the equations for the two- 
dimensional flow under consideration are first written in terms of the primitive 
variables, i.e. the velocity components u, v, the pressure p and the temperature T. 
Then, the equations are non-dimensionalized using Hi as the characteristic length, vi 
as the characteristic velocity and vi/Hi as the characteristic time. By the elimination 
of the pressure, the equations are obtained in terms of the dimensionless stream 
function Y (where U = aY/aY, V = - a Y / a X ) ,  vorticity SZ = aV/aX-aU/aY and 
temperature 0 = ( T -  q ) / A T .  Hence, the stream function-vorticity formulation for 
the problem in conservative form is: 

vorticity transport equation (fluid region) 

an Gr ae 1 
aT Re2aY Re -+V.(VQ) = ---+-vzn; 

stream function equation (fluid region) 

v2 Y = -52; 
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Energy equation (both regions) 

In these equations, V = (U,  V )  is the dimensionless velocity vector, with U the 
vertical and V the horizontal component, respectively. In  the energy equation, the 
density p,  the specific heat at constant pressure C, and the thermal conductivity k 
may refer to either the fluid or the solid, since this equation is valid over the entire 
domain, including both the solid and the fluid regions. The properties of the solid are 
denoted by the subscript s and those of the fluid by the subscript f. When the 
equation is solved in the solid region, the ratio of the thermal diffusivities r, = a,/a, 
will arise as a parameter when the equation is divided through by pC,. 

2.2. Boundary conditions 
The no-slip conditions at  the walls U = V = 0 lead to the condition Y = constant. 
Thus, a t  the ceiling of the enclosure, Y is arbitrarily specified as zero. If the 
dimensionless mass flow rate at the inflow is taken equal to 1, mass conservation 
requires that Y = 1 at the lower horizontal boundary, or floor, as well as at  the 
portion of the vertical walls that lies below the inflow and outflow channels. The 
vorticity is not known in advance at  the walls and will be computed as part of the 
numerical procedure. At the inflow opening, the conditions, assuming uniform flow, 
are 

where d: is the dimensionless distance of the midplane of the inlet channel from the 
bottom of the cavity. For the boundary condition at  the outflow, all the gradients 
in the horizontal direction, denoted by a subscript 0, are taken as zero, to represent 
developed flow and thermal fields. The vertical velocity component is also zero. Thus 

(5) 

ae/an = 0 at the outer walls, (6) 

v, = 0, v, = 1, Y, = 1 - [ X -  (d: -31, 52, = 0, (4) 

u, = 0, (av/aq, = (ay/ay), = (aa/ay), = 0, 

and the boundary conditions for the temperature distribution is 

where n is the direction normal to the wall. This condition is also applied at  the 
outflow, with Y replacing n, while at  the inflow 8 = 0. Then, at the interior walls 
(solid-fluid interfaces), the continuity in the heat flux requires that 

- 1 on the heat source 

{ 0 on other surfaces, 
(7) 

where, again, n is the direction normal to the interface, rk = r,r, = k,/k,  is the 
thermal conductivity ratio and rc is the ratio of the thermal capacities. 

(aO/an) ,  = r,(aO/an), + C, where C = 

3. Numerical procedure 
The computational domain, including both the fluid and the solid wall region, is 

discretized by using a non-uniform grid with 49 grid points in the horizontal direction 
and 45 points in the vertical direction. The points are more closely spaced in regions 
adjacent to the walls, where large temperature and velocity gradients are expected 
to develop. A finer grid (89x97) was also used for comparison, by doubling the 
number of grid points in each direction. At these grid dimensions the results were 
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found to be largely grid independent. The governing equations were discretized and 
converted into systems of algebraic equations by integrating over control volumes 
defined around each grid point, in the manner described in Patankar (1980) and using 
the power-law approximation for the convective terms. Special equations were 
derived for the grid points lying on solid-fluid interfaces, by considering energy 
balances over two partial control volumes, one on the fluid side and one on the solid 
side and equating the heat fluxes a t  their common interface. The relevant procedure 
is described by Papanicolaou & Jaluria ( 1 9 9 0 ~ ) .  

The numerical procedure is the same as that described by Papanicolaou & Jaluria 
(1990b). The time-dependent vorticity and energy equations are written in the 
following common form in terms of a dummy variable 9: 

(8) 

where S, is a source term in this generic advection-diffusion equation and depends 
on the variable $. It can easily be realized that 

% = {  0 in the energy equation. 

The symbol J* represents the total (convective + diffusive) flux vector (dimensionless 
for our purposes), which is defined as 

a$/a7 + v . J* = s,, 

(9) 
- (Gr/Ree)(ae/aY) in the vorticity equation 

J* = V$-rQ$ .  (10) 

In this definition, r is a diffusion coefficient which depends on the type of equation 
to be solved. Comparing (10) with (1) and (3), it is seen that 

in the vorticity equation 

r = l / (RePr)  in the energy equation (fluid region) ( 1 1 )  r ra( l /RePr)  in the energy equation (solid region). 

The alternating direction implicit (ADI) method was employed in the solution of 
(8). The equation is first integrated over each control volume AV and the space 
derivatives are removed. The time discretization is then carried out in two steps, 
involving three successive time levels, namely r(Ic), 7* = 7(Ic) + #A7 and W') = #kc) + A7 : 
at 7* = ? ( I c )  + +A7 : 

+a,($P+l)-$~+l))-aw($g+l) -$$+1)) = I #,dV. 
AV 

By separating the unknown from the known values at  each of the time levels 7* and 
7(*+l), tridiagonal systems of algebraic equations are obtained and solved. The 
successive over-relaxation (SOR) method was used in the solution of the stream 
function equation (Jaluria & Torrance 1986). This is a very efficient method for large 
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systems of linear algebraic equations characterized by sparse matrices, such as the 
stream function equation in this problem. With w denoting the over-relaxation 
factor, the expression obtained for the value of the stream function a t  any point 
i,j of the flow field is 

for i = 1,2, .  . . , i,,, - 1 and j = 1,2, . . . ,j,,, - 1. In the above expression, 

is the local grid aspect ratio and r ,  = GX,_JSX,, r, = Sq-l /Sq are the ratios between 
two adjacent grid spacings in the X -  and Y-directions, respectively. The wall 
vorticity is updated at each time step, using fini te-diffcrcnce approximations 
(Roache 1972). Both first-order and second-order formulae have been used. The 
second-order formula is 

HiSi  = SY, /SX,  

szw = 7 ~ w - 8 ' y , + , +  y w + 2  +O(An)2, 
2(An)* 

where An is the distance of the first node far from the wall, the subscript w denotes 
the value of the vorticity at the wall and w + 1, w+ 2 are the values at the two 
adjacent nodes. The above equation, however, is valid only for uniform grid regions 
and, thus, in non-uniform grid regions a first-order formula was used, which is 
(Jaluria & Torrance 1986) 

The code was validated by solving the benchmark problem of natural convection in 
a closed cavity, indicating a close agreement as described by Papanicolaou & Jaluria 
(1990 b) .  

Since our purpose was to study the periodic regime, which is usually obtained after 
an initial transient, we tried to use the largest possible value of the time step, without 
encountering numerical stability problems, in order to reach the periodic regime fast. 
This value was found to  be 0.1. Later the time step was reduced to study its effect 
on the results. For the first computation, the initial condition was the solution 
obtained at the highest value of Gr that resulted in a steady, laminar flow field a t  the 
same value of Re. Then, once the periodic regime was reached, for certain values of 
the governing parameters, the solution obtained could be used as an initial condition 
for the next highest value of Gr for steady flow. 

It should also be noted that the geometric parameters shown in figure 1 were kept 
fixed at the following non-dimensional values, which are typical of laminar flow in 
a small enclosure such as those encountered in electronic circuitry: H = W = 4.0; 
L, = d, = H,, = Hi = 1.0; d, = do = 3.5, where H is the height and W the width of the 
cavity. Since the problem treated here is conjugate, values must also be chosen for 
the thermal diffusivity and thermal capacity ratios (solid/fluid), ra and rc 
respectively. In  this work, the effect of these parameters will not be studied and thus 
their values are fixed a t  : r, = 0.8 (typical for materials such as steel or aluminium) 
and r, = 1.0. For r, = 0, the adiabatic wall case is obtained, which was also found to 
yield oscillatory results (Papanicolaou & Jaluria 1990 6 ) .  
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FIGURE 2. Typical time variation for Re = 100 and Qr/Re2 = 35 of (a) outflow heat flux; 
( b )  maximum stream function; (c) average Nusselt number at the source. 

7 

4. Results and discussion 
4.1. Effect of the Grashof number 

First, the Reynolds number is fixed at  the value Re = 100 and the Grashof number 
Gr is varied. This variation is expressed in terms of the parameter Gr/Re2, which is 
the overall Richardson number (Turner 1973), or, for simplicity in what follows, the 
Richardson number. It must, however, be kept in mind that an increase in the value 
of this parameter is due to an increase in the value of Gr. As was reported by 
Papanicolaou & Jaluria (1990a), laminar steady results can be obtained for up to a 
value of Gr/Re2 = 30 for Re = 100. Some low-amplitude oscillations were present 
near steady state but these were later damped out when the time step was decreased. 
This damping occurs up to Gr/Re2 = 32, but at  Gr/Re2 = 33, the oscillations persist 
and this is where the periodic regime starts. When various quantities are monitored 
with time, such as the total heat flux &, at the outflow channel, the maximum stream 
function Y,,, and the average Nusselt number at the source Nu, = hHi/k,, being 
the average convective heat transfer coefficient, after an initial transient, a periodic 
variation is observed, characterized by constant amplitude and a single frequency, 
as shown in figure 2. The amplitude of the oscillations increases with the Grashof 



498 

0.015- 

0.010 - 

0.005 - 

E .  Papanicolaou and Y .  Jaluria 

0.0201 

Q, 0.010 

0.005 

0 2  525 530 535 540 545 550 

Q" 

0.005 -1 
0 
2700 2705 2710 2715 2720 2725 

w 
0' 
460 465 470 475 480 485 

FIQURE 3. Time variation of the outflow heat flux Qo, demonstrating the effect of increasing Gr/Re2 
on the amplitude of the oscillations, for Re = 100 and (a) Gr/Re2 = 40; ( b )  50;  ( c )  60. 

number, as verified by the time variation of &, at different Grashof numbers shown 
in figure 3. 

The presence of the single frequency is verified by the power-spectrum analysis 
shown in figure 4. The pattern of this periodic variation may look quite different, 
depending on the chosen time step AT. Although the periodicity is evident, even at  
large time steps, the actual frequency and the actual amplitude can only be 
determined when the time step is decreased to smaller values. As expected, it was 
found that there is a minimum value of the time step, below which it has no further 
effect. The output is then found to be sinusoidal and dominated by a single 
frequency. This is clearly depicted in figure 5. The dimensionless time step used 
initially was AT = 0.1. I t  was then decreased by a factor of 4, to the value AT = 0.025 
and then, again, by a factor of 4 to AT = 0.00625. For AT = 0.1, there seems to be an 
almost sinusoidal variation ; however, the actual frequency is not captured and a 
lower frequency is obtained instead. This is an 'aliasing' phenomenon, where the 
frequency of a periodic function may appear like one of its lower harmonics if the 
sampling rate of the function is not high enough. The amplitude, however, is very 
close to the actual one, which is obtained using a time step equal to 0.00625. When 
the time step is reduced to AT = 0.025, a higher frequency is captured, while the 
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FIQURE 4. Power-spectrum analysis of the time variation of the outflow heat flux. The horizontal 

axis is the dimensionless frequency and (a) &/Reg = 35; ( b )  40; (c) 50. 

lower frequency is also present and the amplitude of the oscillations is found to vary 
periodically. This pattern is similar to the phenomenon of ‘beating ’ in the theory of 
mechanical vibrations. The appearance of a periodically varying amplitude however, 
is still misleading, since with a further reduction in the time step Ar to 0.00625, the 
amplitude is seen to remain constant. Only the higher frequency now remains and, 
as was shown in figure 2, the variation with time is sinusoidal. Similar time plots 
showing beating patterns were also obtained in the results of LeQuBrB & Roquefort 
(1985). They observed the existence of two distinct frequencies and they attributed 
the presence of the lower frequency to internal wave motion. Although this is very 
likely, there is also a possibility that this lower frequency might simply be of 
numerical origin and could have been eliminated if the sampling rate of the values 
were increased by using a smaller time step, as is seen to  be the case in our results. 
For Richardson number Gr/Re2 less than 60, the time step AT = 0.00625 was found 
to be adequate to resolve the dominant frequency. However, at Gr/Re2 = 60, the 
time step had to be reduced to AT = 0.001 25 for accurate determination of both the 
amplitude and the frequency. 

From these plots, the time period of the sinusoidal variation can be found and the 
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FIQURE 5. Effect of the time step AT on the time variation of the outflow heat flux, for Re  = 100 
and GrlRe' = 40. Only at the value AT = 0.00625 is an accurate pattern of the output obtained, 
both in terms of the frequency and the amplitude. 
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FIQVRE 6. Variation of the dimensionless frequency of the oscillations in the outflow heat flux with 
the Grashof number Qr,  at various Reynolds numbers: 0 ,  Re  = 80; 0, 90; V, 100. 

inverse of this value taken as the frequency of the signal. Alternatively, a fast-Fourier 
transform (FFT) may be applied to  the data and the power-spectrum density P 
obtained, to determine the fundamental frequency. This is shown in figure 4 for the 
periodic behaviour of the outflow heat flux. The dominance of one single frequency 
for each value of Gr/Re2, along with its harmonics, is obvious. A sample of Z7 = 128 
data points was found to be adequate to  compute the fundamental frequency, 
denoted by fi in figure 4. Increasing the number of points to 2' = 512 simply gave a 
sharper peak for fi but did not show any other frequencies. 

As the Grashof number is increased further, the amplitude of the oscillations, as 
well as the frequency, increases. This is clearly shown in figure 3, where the presence 
of a single, dominant frequency is indicated. The increase in the frequency of the 
oscillations with Gr/Re2 is shown in figure 6 and the increase in the amplitude in 
figure 7. As will be shown below, the frequencies in figure 6 do not vary with the 
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FIGURE 7.  Variation of the amplitude of the oscillations in the outflow heat flux with Gr, at 
Re = 100. The linear variation is clearly shown at slightly supercritical values of Gr. 

square root of the Grashof number, as is the case for periodic natural convection 
problems, but rather with a smaller power of Gr. Clearly, from the same figure one 
may conclude that an increase in the Reynolds number leads to lower frequencies for 
the same Gr. In  figure 7, the slightly supercritical values of Gr at Re = 100 are shown 
to give amplitudes A that can be approximated by a straight line. This is consistent 
with the theory of Hopf bifurcation and also with the results of LeQuBrB & Roquefort 
(1986), where an extrapolation of the straight line towards lower values of Gr was 
used to determine the critical value of Gr. Here, with a similar approach, we find 
Gr,, = 3.3 x lo5 for Re = 100. As the values of Gr are increased further beyond the 
critical point, the slope of the line is found to change. 

4.2. Effect of the Reynolds number 
The next set of results was obtained by keeping the Richardson number fixed at 
Gr/Re2 = 50 and varying the Reynolds number in the range 100-2500. It was found 
that an increase in the Reynolds number has a stabilizing effect. Oscillations were 
observed for up to about Re = 200. For higher values, a steady solution was 
obtained. This shows that there is a critical value ofRe above which the external flow 
cannot reinforce the oscillations that occur a t  the centre of the cavity. Instead, it is 
so strong that it damps out any disturbances in the flow. 

Another set of results can be obtained by keeping the Grashof number fixed at  
Gr = 5 x lo5 and varying the Reynolds number in the range 5@200. Again, for higher 
values of Re the solution was found to be steady. The critical value was found to be 
Recr = 125 and this corresponds to a Richardson number Gr/Re2 = 32. This is very 
close to what was found when the Reynolds number was fixed at  Re = 100 and the 
Richardson number was varied. The fact that the Reynolds number has a stabilizing 
effect verifies that the observed instability is not a flow instability, but rather a 
thermal one whose nature is discussed in detail below. 

Other computational runs were made for Re = 80 and 90 and it was found that the 
critical Richardson number for these values lies near Gr/IZe2 = 34. However, the 
frequencies of the oscillations could not be determined accurately in the beginning, 
since a clearly defined period does not appear unless Gr/Re2 increases to values higher 
than 35, at least with the 45 x 49 grid. The oscillations that develop near the critical 
value are very irregular both in terms of amplitude and frequency. 
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FIQURE 8. considered here, 

4.3. Frequency of the oscillations 
The critical frequency is found to be approximately equal to 0.17, both for Re = 80 
and 90 and about 0.18 for Re = 100, although this is a very crude approximation for 
the reasons mentioned above. As the critical value of Gr for these values of Re is 
approached, the oscillations are of very low amplitude and the time required for the 
steady-periodic state to be reached increases. This is preceded by oscillations of 
varying amplitude and frequency. For Re = 100, it is only at about Gr/Re2 = 35 
where a clearly defined period and amplitude arise early. The frequency was found 
to increase with the Grashof number and decrease with the Reynolds number, as seen 
in figure 6. Taking into account the relevant effect of both Gr and Re in determining 
the frequency of the oscillations, and using data for Gr = 3 . 5 - 6 ~  lo6 and 
Re = 8CL120, the following approximate correlation was derived for the dimensionless 
frequency f: 

f = 0.23Gr0.3Re-0.8. (15) 
The effect of the Reynolds and Grashof numbers on the stability can be 

represented by a stability diagram of the form shown in figure 8. From the results 
presented here, there is strong evidence that the boundary separating the stable from 
the unstable region can be very closely approximated by a straight line. This is 
qualitatively similar to the stability diagram of Chen, Moutsoglou & Armaly (1982) 
for the thermal mode of instability, in flows over isothermal inclined plates. As will 
be further discussed later, the instability in the present work is also of a thermal 
nature. 

In order to compare our frequencies with those of natural convection, the 
differences in the length- and timescales have to be taken into account. In  Briggs & 
Jones (1985) and LeQuBrB and Alziary de Roquefort (1985, 1986), the lengthscale is 
the width of the cavity W ,  while the timescale is the thermal diffusion scale. In our 
case the lengthscale is the height Hi of the inflow opening and the timescale is based 
on the inlet velocity q. Therefore, iff,, is the dimensionless frequency in the natural 
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convection case and fm is the corresponding frequency in the mixed convection case, 
the ratio of the dimensional frequencies, denoted by primes, will be 

Since Hi/ W = f, the above equation becomes 

In the natural convection case, the critical frequency is approximately 0.255 and 
in the mixed convection case, for Re = 100, it is found to be approximately 0.18, 
both in non-dimensional values. A simple calculation from (17), for Re = 100 and 
Pr = 0.733, gives& = 1661 fm. Therefore, the frequencies for natural convection flow 
in the cavity are much higher than those for mixed convection, at the critical value 
of the Grashof number. The highest value of the Richardson number that gives 
consistent trends for the variation of the frequency is Gr/ReZ = 60, for grid 
dimensions 45 x 49 and a time step of AT = 0.00125. Above this value, the 
oscillations become irregular and it is necessary to use a finer grid to investigate 
whether higher-order transitions are taking place. 

4.4. Effect of the grid dimensions 

Many of the results presented here were obtained with a 45x49 grid. The final 
periodic state could be obtained using different starting time steps and initial 
conditions, the latter being obtained from lower-Grashof-number solutions. The 
same frequency was always obtained at the end, for all initial conditions used and 
even starting with the fluid at rest. It was important though to ensure that the time 
step was sufficiently small once the periodic regime was reached, as figure 5 
illustrates. However, in order to confirm the validity of our numerical prediction of 
unsteadiness and periodicity in this problem, different grid dimensions were 
considered. Initially, the number of grid spacings in each direction was doubled, so 
that the mesh became 89 x 97. Since the grid size is now reduced, the time step also 
had to be reduced for numerical stability reasons. With a time step AT = 0.01, the 
numerical scheme eventually results in a periodic solution again, even for the smaller 
grid dimensions. However, the values of the frequency and the amplitude of the 
oscillations are found to be somewhat different from those obtained earlier. The fact 
that the h e r  grid did not damp out the oscillations, but showed higher amplitudes 
instead, was a confirmation of the belief that the oscillations were of physical and not 
of numerical origin. As a matter of fact, the oscillations were better captured by the 
finer grid. 

For a better understanding of the effect of the grid dimensions, other values were 
also considered and the complete results are shown in table 1. It can be observed that 
some of the results, such as the frequency and especially the amplitude of the 
oscillations, are extremely sensitive to the grid size and their values vary significantly 
with the grid. Other results such as !Pma,,, &,,%., and 8,,,, are fairly well predicted 
with the 45 x 49 grid (within 3.5% error or less) compared to the 111 x 121 grid. 
However, the same accuracy for the frequency and the amplitude of the oscillations 
can only be achieved with the 89 x 97 grid. 

This sensitivity of the oscillatory results to the grid size was also found in the 
numerical results of Jones & Briggs (1986). Their frequency was approximately 4 Yo 
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Grid 23x25 45x49 67x73 89x97 111x121 

No oscill. 0.231 0.242 0.249 0.253 
0 1.975 3.350 3.975 4.075 

f 
Ampl. in Q, ( x  lo3) 
QO 0.01338 0.01337 0.01375 0.01385 0.01395 
Ampl./Q, % 0 14.77 24.36 28.88 29.21 
p m a x  1.907 1.652 1.693 1.699 1.695 
e,,,,.J x 107 14.625 18.362 18.863 18.974 19.029 

Nu, 7.188 5.886 5.722 5.711 5.712 

TABLE 1. Sensitivity of selected results on the grid dimensions for a source on the  left-hand 
wall, at Re = 100 and Gr/He2 = 40 
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FIGURE 9. Streamlines at ten different time instants within a cycle of the oscillations, 
for Re = 100 and Gr/Re2 = 60. 
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higher for a 127 x 127 grid, than that for a 63 x 63 grid. The value obtained with the 
finer grid was closer to the experimentally measured frequency. Also, Gervasio et al. 
(1990) found that the coarse grid underpredicted the amplitude of the oscillations by 
30%. In the present work too, the frequencies and amplitudes obtained with the 
finest grid are expected to be closer to the actual values. However, the basic trends 
can still be observed and analysed with the coarser 45x49 grid, which requires 
significantly less computational effort. 

4.5. Nature of the instability 

The streamline patterns at different time instants within a cycle of the oscillations 
reveal more details about the behaviour of the fluid in the cavity. As figure 9 shows, 
the flow field is affected only at the centre of the cavity. The cells corresponding to 
the highest streamline values undergo a circulatory motion at  the right-hand half of 
the cavity. A t  some point, they also split into two and then recombine again. 
Similarly, the isotherms shown in figure 10 demonstrate a periodic motion of certain, 
low-temperature contour lines at the right-hand half of the cavity, denoted by the 
letters A and B. These motions have a very small effect on the rest of the flow field. 
At  the region next to the right-hand vertical wall, the cooling effect of the external 
flow penetrates deeper downward a t  the Grashof number Gr = 6 x lo5, as shown in 
figure 10, and then towards the interior of the cavity. As the cold fluid cells are forced 
to recirculate, they gradually get heated, both from the hot fluid of the thermal 
plume of the source and from the bottom surface of the enclosure, which is at  a higher 
temperature. 

In the steady, laminar results of Papanicolaou & Jaluria (1990a), the heat transfer 
at  the bottom of the cavity was shown to be from the wall to the fluid. This causes 
the two low-temperature isotherms A and B to move backwards towards the right- 
hand wall just before the beginning of a new cycle. The penetration of the cooling 
effect downward and along the right-hand wall was not observed for low values of the 
Grashof number which gave a laminar, steady solution (Papanicolaou & Jaluria 
1990a) and i t  is enhanced at  higher values of Gr, because the region affected by the 
heat source gradually becomes thinner. This is why the instability is observed a t  high 
values of Gr/Re2. The fact that there is heating from below in this problem, as was 
explained above, leads one to believe that the instability is of the Rayleigh-Bdnard 
type. Although the effect of heating from below may play some role in the observed 
instability, it is not the only cause, since even in the case of the cavity with adiabatic 
walls (Papanicolaou & Jaluria 1990b), it was shown that the solution becomes 
periodic as the Richardson number Gr/Re2 exceeds a certain, critical value. 
Therefore, it can be claimed from the above that the numerically predicted 
unsteadiness originates from thermal disturbances occurring at the right-hand half 
of the cavity, opposite to the wall where the heat source is mounted and has the form 
of a travelling wave instability. 

4.6. Additional effects 

Several other variations of the problem, due to changes in the physical or geometric 
parameters are possible. One of the physical parameters is the thermal diffusivity 
ratio r,. For the special case r, = 0 (adiabatic walls) the critical value for the 
transition was found to be lower (Papanicolaou & Jaluria 1990b); more specifically 
(Gr/Re)f = 20 for Re = 100. This indicates that at least for this particular cavity 
configuration, by allowing conduction through the walls, i.e. by making the problem 
conjugate, the periodic regime is delayed. Alternative configurations have been 
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FIQURE 10. Isotherms at different time instants within a cycle of the oscillations, for Re = 100 and 
&/Rea = 60. Of particular interest is the motion of lines marked A and B. 

investigated by placing the heat source a t  the bottom surface, a t  a distance d, = 0.5 
from the left-hand wall and also by considering interactions between two sources, 
located on different surfaces. The case of a single source a t  the bottom (Papanicolaou 
& Jaluria l99Ob) indicated oscillations even at Gr/Re2 = 1 for Re = 100. This is due 
to the instability arising from the heating-from-below circumstance, which has been 
studied in detail in the literature (Gebhart et al. 1988). 

The interaction between two sources was studied in three different configurations, 
with corresponding source locations : ( a )  left- and right-hand wall; (b)  left-hand wall 
and bottom; (c )  right-hand wall and bottom (Papanicolaou & Jaluria 1991). It was 
observed that the presence of a source at the bottom made the configurations ( b )  and 
(c)  even more unstable than the single-source configuration, again due to the heating- 
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from-below effect. This was confirmed by the presence of higher amplitudes of the 
periodic oscillations, compared to the single-source configuration. However, when 
the source on the left-hand wall coexisted with a source on the opposite vertical wall, 
a more stable situation arose, with steady flow obtained even a t  Gr/Re2 = 50 for 
Re = 100. It appears that the presence of a heat source on the right-hand wall does not 
allow the low-temperature fluid to move downward along that wall. This is the 
phenomenon that was observed in figure 10 and which is believed to be the source of 
the instability and of the periodic behaviour. 

The effect of changing the vertical position of the outflow boundary along the 
right-hand wall, expressed by the parameter do, has not been investigated with 
respect to the periodic behaviour, but only with respect to steady flows. However, 
knowing that the cold front motion along the right-hand wall is the destabilizing 
factor, one can expect that by moving the outflow towards the bottom, the 
behaviour of the fluid could significantly be affected. In particular, such a variation 
has been found to cause the recirculation region to reduce in size and the external 
flow to dominate inside the cavity (Papanicolaou & Jaluria 1990b). This will most 
likely have a stabilizing effect. 

The problem studied here is two-dimensional and an important question that 
arises is how different the behaviour of the system would be in three dimensions. 
There is already enough evidence (Jones & Briggs 1986; LeQuBrB & Alziary de 
Roquefort 1988 ; Chikhaoui et al. 1988) that the conclusions drawn from the study of 
a two-dimensional problem are very close to reality. Most experimental studies on 
similar problems have found that the two-dimensional numerical simulations 
predicted the transitions and their features (e.g. the frequency of the oscillations) 
quite successfully. Therefore, based on thee previous observations, it is felt that the 
results obtained in the present investigation describe the physical phenomena 
adequately, even though they are restricted to two dimensions. The use of the 
Boussinesq approximations simplifies the analysis. But the basic features of the flow 
are not expected to change very much if a non-Boussinesq flow is considered, since 
the validity of the Boussinesq approximations for air extends over a very wide range 
of Rayleigh numbers, well beyond the onset of turbulence (Gray & Giorgini 1976). 
However, non-Boussinesq effects can be important in many practical situations such 
as fires and the flow is usually turbulent in these situations. 

Finally, it should be noted that, as found in a previous study (Papanicolaou & 
Jaluria 1990a), this problem is largely dominated by the thermal boundary 
conditions, and the inlet and outlet velocity conditions, for a given flow rate, do not 
have a significant effect on the phenomena taking place inside the cavity. Therefore, 
it is not expected that imposing different inflow velocity profiles or different outflow 
boundary conditions will cause major differences in the results. Changes in the aspect 
ratio, however, may affect the results significantly. 

5. Conclusions 
The present numerical work predicted that mixed convection of air in a cavity 

with conducting walls, induced by localized heating, may become unstable beyond 
a critical value of the Richardson number Gr/Re2. The effects of this instability in the 
flow field are contained within a small region at  the centre and the region far from 
the source of the cavity where a circulatory motion of fluid cells takes place. 
However, the thermal effects are felt over the entire cavity, with the temperature 
and the heat transfer rate computed from the numerical scheme showing a periodic 
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variation characterized by a single frequency. This frequency is an increasing 
function of the Grashof number and a decreasing function of the Reynolds number. 
In particular, the Reynolds number was found to have a stabilizing effect, suggesting 
that the instability is of thermal origin. Although the final periodic state could be 
reached starting from different initial conditions and by using any time step, the time 
step had to be reduced sufficiently, so as to be able to capture the actual frequencies 
and amplitudes. The grid dimensions had an effect which was more pronounced on 
the predicted frequency and amplitude of the oscillations. Increasing grid dimensions 
showed both an increasing frequency and an increasing amplitude. Although 
experimental work is needed in order to obtain the actual frequencies, the numerical 
results of this study are reliable both qualitatively, in describing the physical trends, 
and quantitatively, in predicting the critical values for the transition. 
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03049 and from the Department of Mechanical and Aerospace Engineering, Rutgers 
University, for this work. 
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